

1

IMPLEMENTATION PLAN FOR STANDARDISING PROGRAMMING LANGUAGE

FOR INFORMATION TECHNOLOGY FOR 2015

1. PROBLEM STATEMENT

The complexity to synchronise two different programming languages to implement the

Information Technology (IT) curriculum has been evident since the implementation of

the National Curriculum Statement (NCS) in 2006 and the National Senior Certificate

(NSC) in 2008, and has become even more evident since the implementation of the IT

Curriculum and Assessment Policy Statement (CAPS).

Also, the implementation of the IT CAPS in Grade 11 in 2013, pointed out several

complexities regarding Java implementation of especially the database content in the

CAPS. These complexities are not intended by the IT CAPS content and add additional

overhead for Java learners which could eventually impact on curriculum delivery. It

became clear, that Java is not the best language to implement for the IT CAPS

curriculum due to these intrinsic complexities of the Java language.

Implementing the IT curriculum using two programming languages impacts in terms of

several factors, including different levels of complexity dealt with regarding the different

content areas in the IT curriculum (See Annexure B).

Factors:

1.1. Curriculum

2

With Java there is an additional layer of complexity between the concepts and the

implementation (which solidifies a pupil’s grasp of the concept). The complexity of

translating abstract concepts into practical implementation is much reduced with

Delphi syntax, inherently stable runtime environment and the simplicity of

dependencies, reduced complexity and speed of compilation. Even though Delphi

is much less suited to complex, large scale highly integrated enterprise solutions

it is much better suited to classroom code based representation of generic

abstract programming concepts.

It is a well-known fact that the programming language used to implement a

curriculum, should be best suited to implement the specific curriculum and also

consider the target audience.

Literature also suggests that Java is not a suitable language for introductory

programming courses (See Annexures B and C)

“a computing curriculum should not become a vocational training ground for current

industrial-strength programming languages and programming tools. Any introductory

course in Computing should not be arranged around the syntax of a currently fashionable

programming language. It is more important to concentrate on principles. At the same

time, however, a curriculum must also teach how these principles apply to the real world,

but this relates to teaching program design principles not the use of language constructs.

Teach good habits early otherwise bad habits become ingrained and require costly fixes.

To avoid any confusion, the course should not use a complex language that distracts

from design principles and should not pose problems from complex application domains.

The first language should facilitate the teaching of design principles. ” The Structure and

Interpretation of the Computer Science Curriculum, Matthias Felleisen et al, Journal of

Functional Programming(2004), 14: 365-378 Cambridge University Press.

Java, C, C++, C# fall into the category of complex programming languages. The design

principles that should be covered are data abstraction, functional/procedural abstraction,

data-directed programming.

1.2. One national examination:

1.2.1. Exam panels

Not standardising using one programming language suggests that chief

examiners and moderators ideally need to know different programming

languages which include the syntax, IDE (Integrated Development Area),

3

databases used, database connections, query languages, etc. or that the

panels should be carefully balanced between languages.

1.2.2. Question setting

The different approaches in different languages complicate question

setting as some content such as database manipulation is less complex in

some languages than in others. At times, one could argue that such issues

advantage/disadvantage candidates in one specific language, as they

have to deal with more overheads, code more lines, deal with more

complex concepts, etc. This could impact on the fairness of assessment.

1.2.3. Possible effect on marking

The choice of a programming language is not regulated by policy and

potentially schools could choose a language according to the definition in

the CAPS, which could result in provinces having to deal with different

languages (see 2.5). Therefore, not standardising implies that markers

would need to know different programming languages and marking could

become complicated.

1.3. Migration of learners

It is problematic for learners moving between provinces/schools that use different

programming languages and often such a learner has no choice but to drop the

subject.

1.4. Migration of teachers

Teachers moving between provinces/schools that use different programming

languages need training and support to master the differences in syntax,

approach, etc.

1.5. Teacher support

IT teachers are scarce and subject support is specialised. With more than one

programming language, the support is split. Instead of building strong support

4

and resources in one language, these are split and teachers sometimes struggle

to find enough support and resources or to share resources across provinces.

1.6. Teacher training

Teacher training programmes either need to make provision for more than one

high level language (which is problematic in terms of time available, depth, etc.)

or only train teachers for one specific language (with the result that teachers only

feel comfortable to teach in specific provinces/schools).

1.7. Technical issues

Various setups, approaches, versions of Java/Delphi as well as Netbeans,

databases, database connection, query language, etc. need to be considered.

Also, using different languages, Integrated Development Environments (IDEs),

databases, query languages, etc. as well as different versions of programming

languages, IDEs, databases, etc., raise complexity and call for error in national

practical examinations.

For Java, the correct combination of versions for Java JDK, Netbeans, and

JavaDB need to be used to avoid problems.

Delphi is syntax and environment stable – Java is not – Learning runtime

environment dependencies and configuration (JRE’s, Class paths, Class version

dependencies and conflicts, Java container’s and their individual features,

characteristics module loading techniques etc.) goes far beyond what any

secondary school pupil should be exposed – Delphi is a static and stable

language and runtime and these concerns are for the most part negated.

1.8. Other support

The subject has a small number of learners, teachers and subject advisors. If

support and training have to focus on different programming languages to

implement the curriculum, it becomes time consuming, impractical and costly.

Also, developing material needs to be done in two programming languages, one

5

of the possible reasons for IT not having Grade 11 and 12 CAPS textbooks listed

on the national catalogue.

2. BACKGROUND

2.1. Information Technology was introduced in Grade 10 in 2006 with the

implementation of the NCS and was developed from Computer Studies HG

offered in Report 550. With Report 550, provinces wrote their own provincial

papers and therefore could choose their own programming language. Two

programming languages, Java and Delphi, were offered by the different provinces

respectively, where 5 provinces (EC, FS, GP, LP, NW) offered Delphi and 4

provinces (KZN, MP, NC, WC) offered Java. This status quo remained when

Information Technology was introduced in Grade 10 in 2006 and the NSC

examinations currently provides for both Delphi and Java.

2.2. Several problems were recognised due to having two programming languages,

including deriving detailed content specification considering the different

approaches and peculiarities of each as well as setting Grade 12 NSC papers for

one national examination, considering all of these and avoid disadvantaging any

group of learners. Theoretically, it should not be a problem but practice suggests

otherwise.

2.3. In 2010/11, the DBE proposed a switch to one programming language and after

investigation recommended Delphi/Object Pascal. However, after feedback from

Java provinces, the DBE suggested that:

2.3.1. The status quo (a choice between Java and Delphi) is retained in terms of

the high-level programming language and

2.3.2. Provinces/schools that will continue using Java will have to standardise

using Netbeans (GUI Builder as required by CAPS) with Java, though the

DBE still strongly recommended Delphi for implementing the IT CAPS.

6

2.4. The proposal was again tabled at HEDCOM in March 2013 and HEDCOM gave

instructions to prepare an implementation plan to change to one programming

language (Delphi) to implement the IT curriculum.

2.5. In terms of policy, the IT CAPS does not mention any specific programming

language, but only describes criteria for the programming language to be used:

A high-level software development tool that includes an integrated development

environment which:

 supports both structured and object oriented methodologies

 uses a visual development environment with a graphical user interface

builder and

 allows for event-driven programming

The GUI builder should allow for component based development with a

WYSIWYG (what you see is what you get) editor utilising an event driven

architecture.

The criteria describe a Rapid Application Development (RAD) tool. Two of the

most popular RAD systems for Windows are Visual Basic and Delphi, though

Delphi is regarded the world’s best RAD tool.

The fact that the CAPS does not mention any specific language, means that the

choice of a particular programming language is not regulated by policy and a

school could opt for any programming language that satisfies the requirements.

Currently the NSC examination provides for two programming languages, namely

Delphi and Java. It is therefore safe to derive that a school is currently free to

choose between these two languages, however it could be argued that any other

high level language that meets the criteria could be used, should the DBE not

formally regulate the language.

2.6. With the implementation of the CAPS it became clear that, though Java can

implement the IT CAPS, some aspects in the curriculum, e.g. databases are more

http://www.webopedia.com/TERM/W/Windows.html
http://www.webopedia.com/TERM/V/Visual_Basic.html
http://www.webopedia.com/TERM/D/Delphi.html

7

complex to implement in Java and requires using concepts outside the IT CAPS

curriculum, such as using record lists as containers when dealing with the

database and including the Java Persistence Query Language which requires

queries over objects. (See Annexure B for a comparison between Delphi and

Java with regard to the IT CAPS requirements).

2.7. One should also note, that after the Grade 12 CAPS training in February 2013, IT

teachers from Mpumalanga that attended the training, initiated a change from

Java to Delphi, after realising the complexity of Java over Delphi. This was

supported by the majority of IT teachers in the province.

Also, talking to some of the teachers, one commented: “the only thing I regret, is

not having changed to Delphi long ago”.

Also, during the training of KZN subject advisors and teachers in April 2013,

some teachers expressed their concerns about database aspects in Java and a

few expressed considering changing to Delphi.

2.8. The choice of a suitable programming language in schools is a contentious issue

that normally raises a lot of emotion and would probably be contested as teachers

would approach this from their own contexts, backgrounds and experiences as

well as the contexts of their schools and learners.

3. DISCUSSION

3.1. One should note that the objective of a subject at school level is to provide a

broad foundation that feeds into various disciplines in the particular field in which

learners could specialise after school receiving further training at a higher

education institution, as well as to develop critical thinking. The aim of IT at

school includes motivating learners to be enthusiastic about IT and to realise the

importance of the subject in terms of critical thinking, to learn to think clearly and

8

logically, to pay attention to detail and accuracy, and to instil perseverance (keep

trying), resilience and self-confidence as well as to realise the value of IT in terms

of future careers. The aim is not to produce professional programmers without

further education (just as Life Science do not produce nurses or doctors after

Grade 12).

3.2. Literature suggests that programming is hard to learn and that the choice of the

environment and tool used for teaching is therefore very important:

“Programming is a skill that is considered hard to learn and even after two years

of instruction, the level of programming understanding is low.” (Kurland et al.,

1989).

“Learning to program is generally considered hard, and programming courses

often have high dropout rates. It has even been said, that it takes about 10 years

for a novice to become an expert programmer.” (Soloway, E. & Spohrer, J.

(1989)).

“However, if supported by suitable teaching strategies and tools it can be

mastered by pupils to some extent.” (Papert, 1980).

3.3. In addition to the above, one needs to note that with IT, as compared to other

subjects, teachers need not only have to cope with subject content knowledge

and subject pedagogy knowledge, but also with technology knowledge as well as

the overlap and integration of these, as illustrated in the following diagram:

9

Likewise, learners need to cope with both subject content knowledge as well as

technology knowledge, i.e. the programming environment.

When learning to program learners need to cope with, e.g.,

 learning the language features

 program design

 program comprehension

3.4. Analysis of NSC results over the past 5 years suggests that the subject is

declining in terms of numbers.

The number of schools offering IT in from 2008 to 2012:

National #Schools Increase/Decrease

2012 359 6

2011 353 -28

2010 381 -44

2009 421 -14

2008 439

TABLE 1: THE NUMBER OF SCHOOLS OFFERING IT FROM 2008 – 2012

10

FIGURE 1 NUMBER OF SCHOOLS 2008 – 2012

The number of schools offering IT has declined by about 20% since 2008 up to

2011 and shows a very slight increase again in 2012. The increase, however,

could be due to provinces ‘inheriting’ centres from ERCO.

The number of learners offering IT from 2008 – 2012:

National #Learners Increase/Decrease

2012 4428 115

2011 4313 -571

2010 4884 -1362

2009 6246 -541

2008 6787
TABLE 2: THE NUMBER OF LEARNERS OFFERING IT FROM 2008 – 2012

439 425
381

353 359

0

50

100

150

200

250

300

350

400

450

500

Nat08 Nat09 Nat10 Nat11 Nat12

Number of Schools 2008 - 2009

11

FIGURE 2 NUMBER OF LEARNERS FR OM 2008 – 2012

The numbers show a decline of about 36% in learner numbers from 2008 to

2011, with a slight increase again in 2012. As mentioned above, it could be due to

‘inheriting’ schools from ERCO.

3.5. Factors to take into account when considering a programming tool to implement

the IT curriculum should be based on literature, the IT CAPS, sound pedagogy

and criteria suggested by literature. (See Annexure C)

3.5.1. Milbrandt suggests that a programming language to be used in education

should be

 easy to learn

 structured in design

 universal in use and

 powerful in computing capacity

6787
6246

4884
4313 4428

0

1000

2000

3000

4000

5000

6000

7000

8000

Nat08 Nat09 Nat10 Nat11 Nat12

Number of Learners 2008 - 2012

12

3.5.2. In the paper, Teaching Mathematics and Programming – New Approaches

with Empirical Evaluation (p11 – 19); Linda Mannila adds that the language

should also have

 a simple syntax (intuitive, easy to read)

 use meaningful keywords

 provide easy I/O handling and output formatting.

3.6. As several papers state that “Learning to program is generally considered hard,

and programming courses often have high dropout rates”, it is important that the

environment/tool that is used for learning programming is simple and streamlined.

3.7. Literature also suggests the following important aspects to be considered when

choosing a programming language:

 the curriculum to be implemented

 the target audience

3.8. Should the IT CAPS curriculum be considered, the following curriculum aspects

need to be taken into account:

 Event-driven programming

 Object orientated paradigm

 Manipulation of a database through code constructs

One should therefore consider a programming language that handles all the

above aspects with ease.

3.9. Furthermore, it should also be noted that the Assessment and Qualifications

Alliance's (AQA) in the UK announced in 2010 that A-level computer science

students will no longer be taught C, C# or PHP from next year (2011). The

following is an extract from the statement in The Register:

13

The board "highly recommended" switching to Pascal/Delphi1 because it is stable

and was designed to teach programming and problem solving. Teachers planning

to use Java are warned that many universities are considering dropping it from

their first year computer science programmes, "as has happened in the US".

3.9.1. The document detailing the withdrawal, states: (See Annexure D)

”Pascal/Delphi is highly recommended because it was designed specifically

to teach programming and problem solving - see http://uva.onlinejudge.org/ -

and it is stable. Its event-driven forms-based object Pascal manifestation,

Delphi, has excellent support for a range of applications from networking

through graphics to databases. Delphi is still rated as the world’s best RAD

system and is used extensively throughout the world for commercial

application development”.

3.9.2. The document also states

..”a computing curriculum should not become a vocational training ground for

current industrial-strength programming languages and programming tools.”

Also

“To avoid any confusion, the course should not use a complex language that

distracts from design principles and should not pose problems from complex

application domains.”

4. RECOMMENDATION

4.1. In light of the above, considering the current two languages used, DBE

recommends that all provinces standardise using Delphi as programming

language.

Delphi is ideal for learning programming as it is a strict, yet forgiving language.

You don't need to worry about things such as case, its compiler tells you where

your errors are, it offers console mode, desktop mode, the ability to learn all the

basic constructs up to advanced multi-tier technologies, all with the same

language - something that is VERY important learning about today's computing

1

1
 (Object Pascal) is the object oriented descendant of Pascal

http://uva.onlinejudge.org/

14

world. It is also easy for teachers to get up and running and there are excellent

resources.

It is a mature language. Delphi is a stable with a proven track record.

New versions of Delphi offer Mac, iOS and Android compilers from the same IDE,

and same language! This gives a GREAT foundation for teaching students about

the differences between platforms in a simple way as they don't need to learn a

lot of new things to be able to make it accessible.

4.2. The recommended date of implementation is 2015 for Grade 11 and 2016 for

Grade 12 with teacher training in 2014 and 2015 for Grade 11 and Grade 12

respectively (see point 7 – Implementation)

4.3. It should be noted that the recommendation is made in light of the current two

programming languages used to implement the IT curriculum.

15

5. IMPLICATIONS FOR IMPLEMENTING DELPHI AS PROGRAMMING LANGUAGE

ACROSS PROVINCES

5.1. BENEFITS

5.1.1. Resources

i. Availability of resources – Resources are available and no need to

develop resources from scratch.

a. Textbook

The national catalogue lists no textbooks for IT for Grades 11 and

12, however a CAPS-compliant textbook for Delphi is being

developed (needs to be evaluated and approved by DBE)

b. Other resources

Several websites and blogs are available that support Delphi.

Embarcadero (owners of Delphi) and EOH (distributers of Delphi in

Africa) are willing to support IT in schools through workshops,

material, etc. (See Annexure C)

ii. Sharing of resources between and across provinces – learners and

teachers can use resources such as assessment resources from all

provinces

iii. No need to develop all resources for two languages – saves time and

money.

5.1.2. Cooperation between and across provinces

Improved cooperation between and across provinces. No language ‘fights’

and tension between provinces anymore, no longer ‘us’ and ‘them’ or

‘Java’ and ‘Delphi’ – united ‘in one language’ working for the benefit of the

subject and learners in our country.

5.1.3. Examination papers set for only one language (Delphi)

i. Time to set and moderate practical papers will reduce, resulting in cost

saving

16

ii. Question papers that are fair to all learners – no disadvantaging learners

from a specific programming language

iii. No need to ‘balance’ examination panels in terms of programming

language

iv. Chief examiners and moderators are not ideally required to know both

programming languages

v. Provinces outsourcing the marking of IT papers can outsource to any

province

5.1.4. Curriculum support

Better, ‘undivided’ support to all provinces – support focusing on one

language only, possibly saving time and money.

5.1.5. Technical issues

Focus on one set of requirements, reducing possibility for error. Also,

Delphi has an integrated IDE and is backwards compatible, reducing the

risk of incompatibility of different versions.

5.1.6. Teacher training and development

HEIs training teachers in one high-level programming language focusing

on content depth and better preparing teachers for the classroom

5.1.7. Migration issues for learners and teachers are solved.

5.1.8. Curriculum implementation

Considering the current situation, Delphi is the best language to

implement the IT CAPS curriculum and learners will not be required to

learn concepts and deal with complexities that is not intended by the IT

CAPS curriculum

5.1.9. Other

17

New versions of Delphi have available Mac, iOS and Android compilers,

all from the same IDE and same language! This gives a GREAT

foundation for learners to learn about the differences between platforms

in a simple way as they don't need to learn lots of new things to be able

to make it accessible.

5.2. CHALLENGES

5.2.1. Resistance from Java provinces (WC, KZN, NC – majority of MP teachers

already supported the change to Delphi)

 Java provinces may see the introduction of Delphi as the common

programming language across provinces as a ‘win-loose’ situation

where they are the ‘losers’

 Ego’s of individuals who were part of the initial decision to use Java to

implement the curriculum (however, this should NOT be a reason not

to implement Delphi – sound educational considerations should be

considered) and attitudes of ‘anything but Delphi’

5.2.2. Teachers are ‘change weary’

Teachers from Java provinces may be reluctant to change or question the

fact the ‘they’ have to change whilst ‘those’ from other provinces do not

have to.

5.2.3. Teacher training required in Java provinces

Teachers from Java provinces will need Delphi training. However, one

needs to note that the concepts are the same and training will only need to

focus on the ‘new environment’. Also, teachers that have been in the

system for more than 10 years, taught Pascal in the past and should adapt

very easily to Delphi. Also considering that a textbook is available, a 2-day

training for Grade 11 and Grade 12 each, should suffice. (See Annexure A

for cost analysis)

18

5.2.4. Argument for industry relevance/other programming languages

The aim of school is not to provide vocational training (that is the task of

higher education institutions or FET colleges) but to lay a solid foundation

to enable a learner to pursue further education at an HEI in the IT field.

Although Java is more widely used in industry, Delphi is a matured

language (unlike other ‘newer’ languages that may still struggle with

developmental issues), comes from Pascal (originally designed to teach

programming), used by about 2 million developers across the world and

provides a stable environment.

5.3. COST IMPLICATIONS

Costs involved implementing a new programming language generally includes:

 Teacher training

 Software licenses

 Development of resources

5.3.1. Teacher training

Teachers in Java provinces will require training in Delphi. However, Mr

Buitendag, IT lecturer from Tshwane University of Technology (TUT) is

willing to train subject advisors and teachers at no cost (except for

travelling and accommodation expenses) providing the training takes place

during holidays. See Annexure A for estimated cost implications.

5.3.2. Software licenses

Embarcadero offers free licences to Delphi schools and learners for a

limited period, i.e. they need to register annually to benefit from this offer.

(See Annexure B)

5.3.3. Development of resources

19

Delphi resources are available, including a CAPS compliant textbook for

Grades 11 and 12, though it has not been evaluated and catalogued.

6. IMPLEMENTATION PLAN

6.1. The implementation plan considers teacher training, resources required, e.g.

software licenses, support material and timeframes

6.2. In order to effectively implement the standardisation, suggested activities and

timeframes are provided in the table below:

Activity Time Frame Responsibility

Communicate standardisation of programming

language (Delphi) for IT (Circular to provinces)

September

2013

DBE (Curriculum)

Develop teacher training material for Grade 11

CAPS content

February

2014

DBE (Curriculum) and

PDEs

Procuring of Delphi licences for provinces March 2014 DBE (Curriculum) and

PDEs

Teacher training – Grade 11 CAPS content April and/or

June 2014

DBE (Curriculum) and

PDEs

Implementation of Delphi in all provinces for

Grade 11

January

2015

PDEs

Develop teacher training material for Grade 11

CAPS content

February

2015

DBE (Curriculum) and

PDEs

Teacher training – Grade 12 CAPS content April and/or

June 2015

DBE (Curriculum) and

PDEs

Teacher training – Grade 11 CAPS content April and/or

June 2014

DBE (Curriculum) and

PDEs

Implementation of Delphi in all provinces for

Grade 12

January

2016

PDEs

20

6.3. Risk management

Risk description Risk Management

Inadequate budgets for planned activities Budgets made available for teacher

training

Ineffective support from districts DBE capacitate subject advisors

Inadequate monitoring and supporting Monitor and support processes and

systems put in place

6.4. Conditions for effective implementation

Effective implementation would include the following conditions:

 Java provinces buy into the standardisation of the programming tool

and Delphi as the recommended tool

 Training for subject advisors and teachers from Java provinces

 DBE Support for teachers and subject advisors

 Availability of textbooks for Grade 11 and Grade 12

 Excellent, additional support material, e.g. video’s, exemplar

assessment tasks available

7. CONCLUSION

The Implementation Plan is aligned to the support that will be required for

standardising the tools across the country. It will also provide an opportunity to

consolidate and strengthen IT as a subject.

Annexure A – Analysis of cost

Due to the fact that the concepts in all programming languages are the same, a 2-day

training workshop each for Grade 11 and Grade 12 is recommended.

1. Two-day teacher training for Grade 11 content (2014/15 financial year)

a. Suggested focus for the workshop:

 Delphi IDE (GUI)

 Delphi syntax

 Delphi and Database

Cost for the workshop involves 1 night’s accommodation for teachers, meals and

travel expenses as well as travel and accommodation for the presenter.

The number of teachers per province is estimated from the number of schools

offering IT in the province as per NSC 2012 results.

 KZN MP2 NC WC

Number of 92 18 8 60

1 night @
R1500.00 pp (incl.
breakfast and
dinner)

R138 000.00 R27 000.00 R12 000.00 R90 000.00

Lunch @ R150.00
pp x 2

R27 600.00 R5 400.00 R2 400.00 R18 000.00

Travel @ average
300 km pp @
current fuel rate
(R3.90 per km)

R107 640.00 R21 060.00 R9 360.00 R70 200.00

Travel and
accommodation for
presenter from
TUT (plane ticket +
1 night
accommodation)

R7 000 R7 000 R7 000 R7 000

Printing cost –
training material

R3 000.00 R3 000.00 R3 000.00 R3 000.00

Total ±R285 000.00 ±R65 000.00 ±R35 000.00 ±R90 000.00

2
 MP teachers already had 1 day training in April 2013 (at their own cost, offered by Mr Buitendag from TUT) and

may require less training

2. Two-day teacher training for Grade 12 content (2015/16 financial year)

a. Suggested focus for the workshop:

 Delphi and Database

 Own class

Cost for the workshop involves 1 night’s accommodation for teachers, meals and

travel expenses as well as travel and accommodation for the presenter.

The number of teachers per province is estimated from the number of schools

offering IT in the province as per NSC 2012 results.

 KZN MP3 NC WC

Number of 92 18 8 60

1 night @
R1500.00 pp (incl.
breakfast and
dinner)

R138 000.00 R27 000.00 R12 000.00 R90 000.00

Lunch @ R150.00
pp x 2

R27 600.00 R5 400.00 R2 400.00 R18 000.00

Travel @ average
300 km pp @
current fuel rate
(R3.90 per km)

R107 640.00 R21 060.00 R9 360.00 R70 200.00

Travel and
accommodation for
presenter from
TUT (plane ticket +
1 night
accommodation)

R7 000 R7 000 R7 000 R7 000

Printing cost –
training material

R3 000.00 R3 000.00 R3 000.00 R3 000.00

Total ±R285 000.00 ±R65 000.00 ±R35 000.00 ±R90 000.00

3
 MP teachers already had 1 day training in April 2013 (at their own cost, offered by Mr Buitendag from TUT) and

may require less training or no training at all

ANNEXURE B

IT CAPS requirements and DBE investigation

The prominent requirements for the selection of a suitable programming language for the CAPS

document, is stipulated on page 10 of the CAPS document;

Requirements for high-level programming tool to be used for software development:

◦ High-level software development tool that includes an integrated development

environment (IDE) which:

◦ supports both structured and object oriented methodologies

◦ uses a visual development environment with a graphical user interface builder

◦ allows for event driven programming

The GUI builder should allow for component based development with a WYSIWIG (what you

see is what you get) editor utilising an event driven architecture.

The criteria describe a RAD (rapid application development) tool. Two of the most popular RAD

systems for Windows are Visual Basic and Delphi, though Delphi is regarded as the world’s

best RAD tool

 Criteria

CAPS

Visual Basic.NET

(Microsoft Visual

Studio)

Delphi

(Embarcadero RAD

Studio)

Java (NetBeans)

1 High-level software

development tool that

includes an integrated

development environment

(IDE)

Yes Yes Yes

2 supports both structured

(Structured Programming)

Yes Yes No (Not without utilising

techniques to bend/side-

step the intended

purpose of the language)

3 object oriented

methodologies

Yes Yes Yes

4 uses a visual development

environment with a graphical

user interface builder

Yes Yes Yes

5 allows for event driven

programming See -

[TeachNote *1]

Yes Yes Yes

http://www.webopedia.com/TERM/W/Windows.html
http://www.webopedia.com/TERM/V/Visual_Basic.html
http://www.webopedia.com/TERM/D/Delphi.html

6 allow for component based

development with a

WYSIWIG (what you see is

what you get) editor

Yes Yes Yes

7 Editor utilising an event

driven architecture.

Yes Yes Yes

8 The development tool could

also include software design

utilities to facilitate the

application of software

engineering practices.

Yes Yes Yes

Literature suggestions

In an article written by Siegfried, Chays and Herbert (2008) entitled: Will There Ever Be

Consensus on CS1? a cognitive comparison table based on six of McIver’s rules for evaluating

an introductory programming language is listed. The six criteria are listed below:

1) “Closeness of mapping” addresses how well the notation represents the domain for
which it is intended, e. g., if we are trying to describe arithmetic, how closely does our
notation resemble arithmetic?

2) To be “consistent”, similar semantics should be expressed in similar syntax. Therefore,
an if...elseif...else construction would be considered more consistent than a switch
statement.

3) “Diffuseness” refers to the verbosity of the language. COBOL would be an example of a
diffuse notation.

4) “Error-prone” constructions are those that are more likely to lead to errors, or perhaps
even encourage them. The use of separate pairs of brackets for different dimensions of
an array might be considered error-prone.

5) “Hard mental operations” would require the programmer to prefer potentially difficult
tasks in writing a program, e.g., entering all numeric constants in an unusual number
base.

6) “Role expressiveness” refers to the ability of a reader to infer the usage of a feature just
from its structure.

They presented a table which represents the cognitive comparison of various programming

languages compared. Using the same approach the following table aims to compare the three

programming languages as presented in this document. Two of which i.e. Java & Pascal was

also part of the study done by Siegfried, et.al

Dimension Optimal Java Pascal (Delphi) VB.NET

Closeness of Mapping High Low Medium Medium

Consistency High Low to Medium Low to Medium Low to Medium

Diffuseness Medium to High Low Low to Medium Low to Medium

Error proneness Low Medium to High Low to Medium Medium (VB6 vs.

.Net)

Hard Mental

Operations

Low Medium to High Low to Medium Low to Medium

Role Expressiveness High Low Medium to High Medium (Need to

utilize .Net

constructs e.g.

strings & DB’s)

The CAPS document also includes the development of Data aware applications (Grade 11 p 32

– p 33) where a connection to a database needs to be established to apply transactions.

The following table lists the various objectives and contrast the technical level required for

implementing the objective in each of the three programming environments. Brief notes on each

of the objectives are also supplied.

The complexity scale used for indication purposes are as follows:

1) Simple [Very easily accomplished]

2) Relatively simple [Some initial background/base knowledge required]

3) Somewhat technical [technical requiring some detailed knowledge which is

accomplished with “limited” / modest technical code constructs]

4) Technical [technical requiring more detailed knowledge which is accomplished with

more code constructs]

5) Complex process [very technical with a very detailed knowledge required with expanded

code constructs]

For illustration/comparison purposes connection to an ADO database e.g. MS Access 2007 database is assumed.

Objective Visual Basic.NET (Microsoft

Visual Studio)

Delphi/Pascal (Embarcadero

RAD Studio)

Java (NetBeans)

ADO database e.g. MS Access

2007 database and SQL assumed

Java (NetBeans)

Suggested for CAPS by Java

advisors** (JavaDB and JPQL)

Accessing a database

through programming

language constructs

&

Setup a connection or

connect to a database

(single table) by providing

path in code statements

Complexity Scale: 2 – 3

Using a connection string and

command a data adapter

with a data table or dataset

Complexity Scale: 2 – 3

Using a connection string and a

ADO Connection component as

well as a Data Source and query

or table component

Complexity Scale: 3

Using a connection string and a

connection object and a result set

object.

Knowledge of exceptions is required

in the establishment of a connection

object

Complexity Scale: 4-5

In order to create and establish a DB

and a subsequent connection to the

DB more background knowledge will

be required, especially to concepts

such as client server computing

where knowledge relating to users,

views, ports, IP’s and permissions

are prerequisites. Other important

considerations is the fact that both

teachers and learners need to apply

concepts such as connecting to a

server, understanding user

permissions, and data relating to a

schema etc.

Both Visual Studio and Embarcadero RAD studio provides an easy

interface with wizards which will allow the connection to an Access

Database in simple steps without focusing on the technical details.

The required connection code is automatically generated.

This approach will be very beneficial in the teaching and

enforcement of other DB skills with relation to problem solving.

The NetBeans IDE also provides a

wizard interface for example utilizing

the JDBC/ODBC bridge but it still

requires some technical settings,

and some inherent complex code.

** An approach utilising

programming constructs beyond the

scope of the CAPS such as the

entity manager API (interface), which

could lead to additional technical

complications and overhead. [See

FN1]

Query a database (single

table) using simple SQL

constructs

Complexity Scale: 2 – 3

It is a relatively simple process

to assign a query string to a

either a data-adapter or OLE

DB command.

Complexity Scale: 2

The process is easily

accomplished by assigning a SQL

statement to either a TQuery or

TDataset (related) component.

Complexity Scale: 4

The Query must be assigned to the

result set object. Knowledge of the

methods of the result set object is

required in order to allow for

** Complexity Scale: 5

In the examples provided by the

DBE training team an alternative to

SQL is used to query the JPA entity

objects, i.e. JPA Queries (JPQL /

Knowledge of the Data Adaptor

component or DB command

object is required.

The result of the query could

easily be assigned to a

DataGrid view component

The result of the query could very

easily be assigned to a DBGrid.

functionality.

In order to list the content of a query

the implementation of a jTable

component is required.

This is an inherent complex process

Criteria)

The JPA Query Language (JPQL)

can be considered as an object

oriented version of SQL. The main

difference between SQL and JPQL is

that SQL works with relational

database tables, records and fields,

whereas JPQL works with Java

classes and objects. [See FN2]

In essence the application of the

JPQL requires a prerequisite

knowledge of the concept of an array

of objects as a <List> ans

serialization [which are excluded

from the CAPS]

Use programming

language constructs in the

execution of various

simple database

transactions

− Access fields and

records within a dataset

with code constructs and

applicable methods

Complexity Scale: 2 – 3

In VB.NET it is required to

either access the columns and

rows of the DataGrid view

component or to create

separate table component

utilising the rows property.

Complexity Scale: 2

The records and fields within a

Query or Table component are

easily accessible through simple

code constructs.

The result dataset is easily

displayed in the DBGrid

component

Complexity Scale: 2 – 3

The result set provide read only

access to the results of the query

selected, in a one directional

manner.

In order to list the content of a query

the implementation of a jTable

component is required.

This is an inherent complex process

** Complexity Scale: 4- 5

Here the JPA, API methods will need

to be applied

Navigate the records of a

dataset

Complexity Scale: 2

Methods related to the

navigation of the record pointer

are available for

implementation. Direct

reference to the rows of the

data table is also available

Complexity Scale: 2

Methods related to the navigation

of the record pointer are available

Complexity Scale: 2

Methods related to the navigation of

the record pointer in the result set

Here the JPA, API methods will need

to be applied

Modify individual fields Complexity Scale: 3-4 Complexity Scale: 3 Complexity Scale: 3-4 Here the JPA, API methods will need

and records within a

dataset with code

constructs and applicable

methods, and apply all

changes

&

Manipulate a dataset

object and records with

code constructs and apply

all changes

&

Use programming

language constructs in the

execution of various

simple database

transactions

Without Using

The DB command object could

be implemented in conjunction

with a Data Adapter

component to perform record

manipulation.

Knowledge relating to the use

of the Data Adapter as well as

the DB command objects is

required. All manipulation of

data is to be done by the

implementation of SQL

constructs.

Delphi allows for the manipulation

of data in a table via the

invocation of simple Table

methods to edit and update data

in a table without SQL overhead.

It also allows for the easy

implementation of SQL constructs

to manipulate a database table.

Java requires the use of an SQL

statement object to perform a DML

query to manipulate the data in a

table. The method ExecuteUpdate()

is required to perform the

functionality.

All manipulation of data is to be done

by the implementation of SQL

constructs.

to be applied

Incorporate dataset event

handlers and methods as

part of the solution

Complexity Scale: 4 – 5

This is a relatively complex

operation as it requires the

implementation of Delegates

where it is required to Map an

Event to a specific Delegate.

Delegates are in essence

prewritten event handlers

which must be tied to a object

using code.

Complexity Scale: 3

The TADO Table or TADO Query

provides an extensive list of

events which is easily accessible

via the IDE.

Such methods are easily

incorporated into the program

code.

Complexity Scale: 5

This process is DB specific and

requires the implementation of

triggers or stored procedures which

falls outside of the scope of the

CAPS document.

Here the JPA, API methods will need

to be applied

Develop a multi-form GUI

incorporating simple

controls

** This objective is

applicable to both DB

driven applications as well

Complexity Scale: 4

Creating Multiform or MDI

applications in the .NET

environment is a relatively

complex process due the

protective nature of the

Complexity Scale: 3

Access to various form or MDI

application forms is easily

accomplished due to the

composition of the VCL

architecture.

Complexity Scale: 5

Creating Multiform or MDI

applications in the NetBeans

environment is a relatively complex

process. Multiple JFrame objects

need to be instantiated with the

Here the JPA, API methods will need

to be applied

as non DB driven

applications and

scenarios

environment with relation to

form objects. Extensive

knowledge on reference

passing is required to share

form class object properties

and events.

manual inclusion of accessor

methods to share various objects

(components) attributes in the same

multiform application.

Properties are also not directly

assessable – See note on page 5.

FN1 – JPA training

JPA training is provided to candidates which are already reasonably knowledgeable in standard Java programming which include:

Java Developers, Java EE Developers (learner will only have 6 month’s basic Java programming experience)

Required Prerequisites

 Display experience with the Java programming language

 Integrate existing Java code (for example, reuse existing classes created by other team members)

 Java Programming Language, Java SE 6

(http://education.oracle.com/pls/web_prod-plq-

dad/db_pages.getpage?page_id=609&p_org_id=30&lang=US&get_params=dc:D65187GC10,p_preview:N)

FN2 – Code complexity

The ability to retrieve managed entity objects is a major advantage of JPQL. For example, the following query returns Country

objects that become managed by the EntityManager em:

http://www.objectdb.com/java/jpa/query/jpql/select

http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=609&p_org_id=30&lang=US&get_params=dc:D65187GC10,p_preview:N
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=609&p_org_id=30&lang=US&get_params=dc:D65187GC10,p_preview:N
http://www.objectdb.com/java/jpa/query/jpql/select

FN** - General

The content and prerequisite knowledge required surpasses the intended application of the CAPS. To fully understand the use of the

JPA, which is a complicated architecture based on an abstraction layer requires detailed understanding, to grasp some basic

concepts.

The approach for Java presented as part of the CAPS training, is cognitively challenging, and could have some negative impact at

later stages with regard to the API versioning.

http://www.objectdb.com/java/jpa/persistence/managed

http://pic.dhe.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=%2Fcom.ibm.websphere.ejbfep.multiplatform.doc%2Finfo%2Fae%2F

ae%2Fwelc_newinreleaseejbfp.html

Comments from senior Java Developers in industry:

http://www.objectdb.com/java/jpa/persistence/managed
http://pic.dhe.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=%2Fcom.ibm.websphere.ejbfep.multiplatform.doc%2Finfo%2Fae%2Fae%2Fwelc_newinreleaseejbfp.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=%2Fcom.ibm.websphere.ejbfep.multiplatform.doc%2Finfo%2Fae%2Fae%2Fwelc_newinreleaseejbfp.html

ANNEXURE C

1. The choice of a first high-level programming language in schools and other educational institutions is

a contentious issue that has been debated for decades and often lead to emotional, almost childish

debates. The article written by Siegfried, Chays and Herbert (2008), Will there ever be consensus on

CS1? starts with the following abstract:

The choice of programming language, the approach by which students are taught and the software

tools made available to students have been controversial issues in many ways. While there once was

a consensus of some sort within the computer science education community, it is much more difficult

to find common ground among those of us who teach introductory programming courses. The

literature is explored and answers sought to the question of which language is optimum in teaching

novice programmers, as well as the approach that ought to be used. Finally, the question of whether

a consensus can be reached is addressed.

The paper further argues that most languages that are presented for use in a CS1 course have some

aspects that make them undesirable to some faction within the computer science education

community. The paper concludes:

Arguably, the discipline may need a new teaching language that will offer the benefits that the

computer science education community found in Pascal over thirty-five years ago. But at the present,

it seems that there will be great difficulty finding that consensus.

2. The article, Choosing a First Programming Language, by Randy Kaplan (2010) states the following:

When choosing a programming language to teach students as their first programming language,

which one should be chosen? There are approximately 2000 to 3000 known programming languages

documented on the World Wide Web. Which one would be the best to

(1) teach students the proper concepts of programming, and

(2) maintain student’s interest in programming as an aspect of computer science?

It concludes:

It seems reasonable to suggest that it is time for a novice programming language to be created that is

designed around not only technical concepts but also educational and psychological concepts.

The DBE therefore focused on the two languages currently used (Delphi and Java) as well as the

alternative one suggested (VB.Net).

3. The article, Will there ever be consensus on CS1? states the following:

Java is not an ideal language for beginners. McIver points out that Java’s modular structure and

requirement that every data item and method be part of a class mandate a certain minimum size for

every program, no matter how simple it may be. This also applies to the definition of constants, which

can require as many as four reserved words. While a subset of Java can minimize the problems that

novice programmers must face, it is very difficult to create a subset that addresses all these

concerns. The popularity of Java is partially due to the fact that it is used for many real-world

applications, particularly web-related applications. Yet there are many features that make it difficult

for novice programmers.

McIver examined several languages, including Java, which failed to meet the optimal case for

cognitive dimensions. Pascal remains the closest to optimum of the four languages shown.

Similar arguments are raised in other literature.

4. Furthermore, it should be noted that the Assessment and Qualifications Alliance's (AQA) in the UK

announced in 2010 that A-level computer science students will no longer be taught C, C# or PHP

from next year (2011). The following is an extract from the statement in The Register:

The board "highly recommended" switching to Pascal/Delphi* because it is stable and was designed

to teach programming and problem solving. Teachers planning to use Java are warned that many

universities are considering dropping it from their first year computer science programmes, "as has

happened in the US".

The document detailing the withdrawal, states:

Pascal/Delphi is highly recommended because it was designed specifically to teach programming

and problem solving - see http://uva.onlinejudge.org/ - and it is stable. Its event-driven forms-based

object Pascal manifestation, Delphi, has excellent support for a range of applications from networking

through graphics to databases. Delphi is still rated as the world’s best RAD system and is used

extensively throughout the world for commercial application development.

5. It should be noted that there is not such a richness of literature available with regard to Delphi and

education per se. Most of the articles focus on Pascal. Therefore, these were used as a basis to

evaluate Delphi (Object Pascal), also considering the added features and functionality. The focus of

the evaluation is educationally sound criteria of which readability/simple syntax and ease of use,

especially considering the requirements of the IT CAPS were highly valued.

About Delphi and Embarcadero

Summary of aspects that could be considered:

Aspect for

consideration
Delphi Java

Examination More than one programming language, different versions, databases, query language -

problematic

Migration Learner migration between Delphi and Java provinces is problematic

Resources

(Textbook)

No Grade 11 IT textbooks listed on

national catalogue

Textbook (not evaluated by DBE)

available for Delphi

No textbook available for Java –

problematic as CAPS follows new

approach

Support Resources needed in two languages.

Training Java teachers will need Delphi training

IDE/GUI builder Integrated with Delphi (RAD studio) – no

additional software required – seamless

integration

Java requires Netbeans – not integrated

but a bolt-on – could be problematic

especially if correct versions/combinations

are not used

Database MS Access for Delphi – not server-based

(bolt-on). No problems experienced –

have been using Access and Delphi since

2000

(Integrated server-based database

available that also works seamlessly)

Java uses built-in JPA (server-based) –

designed for industry use and could be

very complicated for learners as it

requires additional overhead concepts not

required or specified in curriculum such as

knowledge of Client-Server computing,

SQL DML scripting etc.

Educational

soundness

Delphi is easier to read, closer to natural

language, less syntactical overhead

More suitable as a first language (comes

from Pascal which was designed for

teaching programming)

UK (AQA) recommended Delphi for

Computer Science courses

Java syntax more difficult to read, more

syntactical overhead

Many are phasing it out in introductory

courses

Questionable w.r.t. suitability for learners

Even some Java developers in industry

raised their eyebrows in learning that Java

is used as language in schools

Literature suggests that Pascal (Delphi) is

more suited than Java and states that

despite the popularity of languages such

as Java, C and C++, there has been much

debate about the suitability of these

languages for education, especially when

introducing programming to novices

Aspect for

consideration
Delphi Java

Industry

relevance

Delphi not as widely used as Java,

though rapidly growing with exciting new

features

Java is very widely used in industry

Technical

issues

Backwards compatibility in Delphi is

normally addressed very easily

As Java is open source, stability could be

questioned.

Java users will always have to ensure that

they use the same JDK version (and the

latest version) else compatibility issues

might arise (as we have seen in the 2010

matric exams in terms of the data files as

well as memo discussion with regard to

different classes used for input, etc.) – not

always fully backwards compatible

The same applies to Netbeans

IT CAPS

requirements

No problem with Delphi – best suited for

CAPS (recommended by DBE)

Some aspects of the curriculum

(databases) harder to implement in Java

and more complicated in Java which

requires the use of concepts outside the

curriculum, e.g. use of record lists as

containers when dealing with the

database. The inclusion of the Java

Persistence Query Language which

allows for queries over objects.

Cost Delphi is not free

Embarcadero announced free Delphi 10

licenses for schools for limited period

Embarcadero offers educational licences

with a 90% discount on the normal licence

fee.

Java as well as Netbeans are open

source and therefore free

Support for open source software might

be a problem

Many different versions are problematic

as compatibility problems between

different versions exist

Features used today to implement the

curriculum may not be available with new

versions

ANNEXURE C –

Why choose Delphi/Object Pascal for GCE Computing - Assessment and Qualifications Alliance

(AQA) – UK

(Copied from original PDF document)

Teacher Resource Bank

GCE Computing

Other Guidance:

Why choose Pascal for GCE Computing?

Why choose Pascal? Industrial-strength, fashionable languages versus languages for

teaching the principles of computing and programming

AQA's advice that teachers choose to teach their candidates Pascal for the GCE in Computing,

rather than any other programming language is based on sound pedagogical reasons

supported by current research.

Quoting from one among several papers:

“Firstly, a computing curriculum should not become a vocational training ground for current

industrial-strength programming languages and programming tools. Any introductory course in

Computing should not be arranged around the syntax of a currently fashionable programming

language. It is more important to concentrate on principles. At the same time, however, a

curriculum must also teach how these principles apply to the real world, but this relates to

teaching program design principles not the use of language constructs. Teach good habits early

otherwise bad habits become ingrained and require costly fixes. To avoid any confusion, the

course should not use a complex language that distracts from design principles and should not

pose problems from complex application domains. The first language should facilitate the

teaching of design principles. ” The Structure and Interpretation of the Computer Science

Curriculum, Matthias Felleisen et al, Journal of Functional Programming(2004), 14: 365-378

Cambridge University Press.

Java, C, C++, C# fall into the category of complex programming languages. The design

principles that should be covered are data abstraction, functional/procedural abstraction, data-

directed programming.

What constitutes an appropriate programming language for introducing principles of

programming?

Firstly, the language must be one that supports the exploration of algorithms and principles of

computation.

Secondly, the language must support the teaching of program design principles.

Thirdly, it must support progression to teaching OOP principles in a user-friendly way and be

capable of event-driven programming in a visual environment.

Fourthly, it must have good support for creating database applications and networking.

Fifthly, it must be extensible so that other types of application programming such as 2-d and 3-d

gaming can be supported.

The language must be one that supports the exploration of algorithms and principles of

computation.

Pascal is a very easy programming language to understand and algorithms continue to this day

to be expressed in Pascal-like pseudo-code. There is now plenty of research literature that

highlights the difficulties that university Computer Science/Computing departments have

experienced introducing programming to novices. Universities switched from teaching

introductory programming courses using Pascal to using C which they then abandoned as

being too difficult, very quickly. C was replaced by Java with similar adverse results. Many

Computer Science/Computing departments have now switched to mini-languages based on

Pascal-like languages or functional model-view programming languages based on Scheme for

introducing the principles of programming. Some of these have adopted a visualization

approach using microworlds, e.g. C-Sheep uses a subset of C but it resembles Pascal very

strongly- The National Centre for Computer Animation, Bournemouth University (URL:

http://ncca.bournemouth.ac.uk/eanderson/C-Sheep/), “Karel the Robot” is also very popular. Its

syntax is based on Pascal.

The language must support the teaching of program design principles.

A paradigm shift has also occurred with a return to using a procedural language approach for

introducing programming to novices rather than an object-oriented language. The teaching of

industrial-strength languages such as Java is now being delayed until later in undergraduate

courses. Interestingly, Oxford Brookes teaches Delphi to their undergraduate first year students,

beginning with Pascal console mode within Delphi and later switching to the event-driven,

object-oriented programming environment within Delphi. Oxford Brookes entry requirements for

their Computing courses are lower than the Russell group universities.

It must support progression to teaching OOP principles in a user-friendly way and be capable of

event-driven programming in a visual environment.

Delphi is a robust and commercially successfully language used extensively in North America

and Europe. In fact, the support in Europe in education is extensive. Hence the Lazarus project,

an open source initiative that supports Pascal and Delphi. Lazarus Pascal and Delphi is

recommended for use in schools in mainland Europe. Whilst on the International front for our

brightest computing students to compete in the International Olympiad of Informatics (IOI) they

must know either Pascal or C. The lack of educational opportunities pre-16 to learn the

principles of programming means that potential IOI students from UK have to start from scratch

at sixteen. Opportunities to compete nationally and then internationally therefore favour the

teaching of Pascal.

It must have good support for creating database applications and networking and it must be

extensible so that other types of application programming such as 2-D and 3-D gaming can be

supported.

Delphi has been voted the world’s best Rapid Application Development (RAD) environment

because of its excellent integration with a range of databases and also excellent networking

solution support. It is also easily extensible with components that support a range of other

applications including 2-d and 3-d gaming. Interestingly, a very popular C/C++ development

environment, Visual Dev-C++, is written in entirely in Delphi. Candidates using Delphi may

aspire to producing very complex applications eventually. We already see a very high standard

of project work amongst the candidature from centres that teach Pascal/Delphi.

Visual Basic versus Pascal/Delphi

Although Visual Basic is very popular, it is considered a poor language for teaching principles of

Computing. Very few university Computer Science/Computing departments teach Visual Basic.

This is underpinned by research that has compared using Visual Basic with other languages.

This research clearly makes a solid case for using Pascal or Pascal-like languages rather than

Visual Basic to introduce programming because it is based on an event-driven programming

environment.

Microsoft made the decision sometime ago to withdraw support for Visual Basic 6 as it

concentrates on Visual Basic for .Net which is not compatible with VB6. Its replacement C#

borrows very heavily from Pascal and indeed its designers were the same team that designed

Delphi. However, C# is considered an inappropriate language for introducing the concepts of

programming to novices. We acknowledge that many centres use Visual Basic, currently. We

intend to continue to support these centres if they wish to continue with using Visual Basic.

However, we also wish to encourage centres to consider adopting a language that is more

suited to teaching computation. Currently, we feel that this language is Pascal/Delphi although

in the future it could very well be another language such as Python. The feedback that we have

got from universities supports this view.

Borland have made versions of Pascal and Delphi available at affordable prices for use in

centres and free versions for personal use are available. The Open Source Lazarus project

which supports the teaching of Pascal and Delphi in European schools is another source.

Bibliography

P. Brusilovsky, E. Calabrese, J. Hvorecky, A. Kouchnirenko, and P. Miller.

Minilanguages:

A way to learn programming principles. Education and Information Technologies, 2(1):65{83,

1997.

L. Carter. Why students with an apparent aptitude for computer science don't choose to

major in computer science. ACM SIGCSE Bulletin, 38(1):27{31, 2006.

P. Brusilovsky, E. Calabrese, J. Hvorecky, A. Kouchnirenko, and P. Miller.

Minilanguages:

A way to learn programming principles. Education and Information Technologies, 2(1):65–83,

1997.

D. Buck and D. J. Stucki. Jkarelrobot: a case study in supporting levels of cognitive

development in the computer science curriculum. In SIGCSE ’01: Proceedings of the thirty-

second SIGCSE technical symposium on Computer Science Education, pages 16–20, 2001.

L. Carter. Why students with an apparent aptitude for computer science don’t choose to major

in computer science. ACM SIGCSE Bulletin, 38(1):27–31, 2006.

S. Cooper, W. Dann, and R. Pausch. Alice: A 3-d tool for introductory programming concepts.

Journal of Computing Sciences in Colleges, 15(5):107–116, 2000.

W. Dann, S. Cooper, and R. Pausch. Making the connection: Programming with animated small

world. In Proceedings of the 5th annual SIGCSE/SIGCUE ITiCSE conference on Innovation and

technology in computer science education, pages 41–44, 2000.

T. Jenkins. The motivation of students of programming. In ITiCSE ’01: Proceedings of the 6th

annual conference on Innovation and technology in computer science education, pages 53–56,

2001.

Do Robots Dream of Virtual Sheep: Rediscovering the "Karle the Robot" Paradigm for the "Plug

Play Generation", Eke Falk Anderson, eanderson@bournemouth.ac.uk, Leigh McLaughlin,

lmcloughlin@bournemouth.ac.uk, The National Centre for Computer Animation, Bournemouth

University, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK

mailto:eanderson@bournemouth.ac.uk

