UT3 Bots – Getting Started Guide

Contents

3Your First Bot

4Setting Up Your Bot

4Bot's First Sight

5Bot's First Steps

5Bot's First Shot

6Bot's First Reaction

6Viewing Your Bot in Action

7What To Do Next

7Delphi Prism Version

8Conclusion

8Frequently Asked Questions

8Do I need Unreal Tournament 3 to use this stuff?

8My bot won't move! What did I do wrong?

8My bot keeps getting stuck when it runs into a wall. How can I stop this?

8What events can my bot react to?

9How can I speed up the creation of event handlers for my bot?

9My bot seems a little slower than the other bots! How do I make it faster?

9My Bot is nearly dead! How do I get it to collect some health?

10Some of the methods want me to provide a HealthType, AmmoType, etc as a parameter. Where can I find these?

10How do I shoot at another player?

11Which version of Unreal Tournament 3 do I need if I want to see in game action?

11Where can I get my hands on the source code?

11API Quick Reference

11UT3Bots Namespace

11UTBot Class

12BotCommands Class

12BotEvents Class

14GameState Class

14UTBot.Communications Namespace

14UT3Bots.UTItems Namespace

14UTBotState Class

15UTBotOppState Class

15UTBotSelfState Class

15UTIdentifier Class

15UTItem Class

16UTObject Class

16UTPoint Class

16UTItemPoint Class

16UTMap Class

17UTPlayerScore Class

18UTVector Class

18Copyright Information

[image: image2.png]

Introduction

 Have you ever played a first person shooter? Then you've probably played against computer controlled players known as "bots" which are computer programs designed with artificial intelligence. Up until now the only way to do create your own bot for a game like Unreal Tournament 3 was to learn a bunch of C++ and complicated AI routines. Of course, what you really want to do is code up your bot using Delphi Prism. So here is a way to do just that.
 (Note: This was originally written for C# development by Andy Sterland & James Lissiak. It has been updated to work with Delphi Prism by Jim McKeeth. There may be some outdated references or code examples.)
All you need is this document, Delphi Prism, UT3Bots.RemoteBot.dll, and an internet connection to build this bot.
Your First Bot

Once you've created a new bot you'll have a very basic class with just a constructor and an overridden ProcessActions() method.

namespace UT3UserBot;

interface

uses

 System.Collections.Generic, System.Linq, System.Text, System.Threading,
 UT3Bots, UT3Bots.UTItems, UT3Bots.Communications;

type

 TMyBot = public class(UTBot)

 protected

 method ProcessActions(); override;

 public

 constructor;

 end;

implementation

constructor TMyBot;

begin

 inherited constructor(

 '174.133.254.34', // Server IP Address
 'Delphi Prism Bot', // Bot name
 BotMesh.Harbinger, // Bot model
 BotColor.Red); // Bot color

end;

//Method to control the bot once it has connected to the server

method TMyBot.ProcessActions();

begin

 //Add code here to perform some actions at specific intevals

end;

end.

Setting Up Your Bot
The first thing you need to do for your bot is configure it with a look and feel, and then actually connect to the server and get in the game. This is pretty straightforward, all you need to do is alter the parameters that are getting sent up to the base bot class in the constructor.

· Server IPAddress - The first parameter is the IPAddress of the server to connect to. By default this points to the UT3Bots server we have running on the internet, you'll need to alter this to point to the server you need to connect to.

· Bot Name – The name of your bot will be seen on the Visualizer and in game.

· Bot Mesh – This is the appearance of your bot on the server.

· Bot Color – This is the color of your bot.

Now you are ready to join a UT3 game.

Pressing F5 will build and run your bot. The bot project will load up a little console application which provides info about what your bot is doing.
Bot's First Sight
Now that we have a bot in the game we need to make it actually do something. The first thing we are going to make it do is move to a UTNavPoint. This is a location in the game which might hold something interesting. A series of UTNavPoints provide a path through the level to interesting items. A bot can travel around a game level by moving from one UTNavPoint to another.

Within the game framework (UT3RemoteBot.dll), an instance of the UTVector class can be used to express the actual location of something. The location of a UTNavPoint is given by its Location property, which is given as a UTVector value.

Our bot needs to have a way of keeping track of where it is going so in the UT3UserBot class create a new private UTVector called destinationLocation
private destinationLocation: UTVector;

We want our bot to head towards the first navpoint that it “sees”. To do this we place the following code into the ProcessActions() method.

destinationLocation = GameState.NavPointsVisible[0].Location;

The GameState property of our bot contains information on the current state of the game. NavPointsVisible is a list of references to UTNavPoint instances which refer to all of the UTNavPoints a bot can currently see. The above code simply takes the UTVector at position 0 (the first navigation point your bot can see) and sets destinationLocation to refer to it.

So at this point the bot has identified the location it wants to move towards, now we have to make it move in that direction.
Bot's First Steps
Now we are going to make our bot move to the destination it has selected. Place the following code into the ProcessActions() method just below the code written in the previous example.

Commands.RunTo(destinationLocation);
The Commands property provides a set of methods which are the commands that your program can give to the bot. There are a wide range of commands, some of which are listed below. For full details you should investigate the API reference.

· Jump() - Jumps in the air

· RotateBy() - Rotates by a specific number of degrees
· RunTo() - Runs to a specific location

· StartFiring() - Attacks a target or location

· StopFiring() - Stops the bot from shooting

· StrafeTo() - Strafes to a specific location while looking at another
The RunTo() command is provided with a destination location. When this method is called your bot will start running towards the destination.

If you execute this program you will see your bot start running towards a navigation point.

Bot's First Shot
For the purpose of this example we will next make our bot shoot at the location it is running towards, it is recommended that you change this when creating your own implementation as shooting at an empty UTNavPoint is unlikely to get you many frags.

Place the following code into the ProcessActions() method just below the code written in the previous example.

Commands.StartFiring(destinationLocation, false);
If you execute the program you will see that your bot now shoots at the location as it runs towards it. It will continue running and shooting until you call a method to instruct it to stop, or it runs out of ammo!

Place the following code into the ProcessActions() method just below the code written in the previous step.

Commands.StopFiring();

Your bot will now stop shooting.
So you now know how to get your bot to do something in the game. Running around and shooting things is as easy as using the GameState property to access what your bot can see, and the Commands property to call methods that perform actions.
Bot's First Reaction

Now we are going to make the bot react to things that happen in the game. This is done by subscribing to any of the events that the bot exposes through its Events property. We normally want to subscribe to the game events as soon as the bot starts, so that we get all the juicy information that we can use to make a clever bot. You can do this by attaching an event handler to an event in the constructor for your bot.
In this example we will subscribe to the OnSpawned event which is trigged whenever the bot spawns in the game, whether this is the first time, or after it has died.

Place the following code into the constructor of the MyBot class.
self.Events.OnSpawned += @Events_OnSpawned;

You also need to add a new method to the class that will be called when the bot spawns.

Place the following method code into the MyBot class.

method TMyBot.Events_OnSpawned(sender: object; e: BotSpawnedEventArgs);

begin

 //Restart your bot's state because we just spawned in the game

 self.Commands.PerformEmote(Emote.BringItOn);

end;
(Use [CTRL]+[C] to complete the class interface section)

Your bot will now start performing a taunt whenever it spawns in the game. This won't actually help you get any extra frags!
There are many different events you can attach handlers to which will allow you to change your bot behavior to react to different circumstances. For full details you should investigate the API reference or check out Visual Studio's intellisense.
Viewing Your Bot in Action
You can easily find out what your bot is up to by using the special Silverlight 2 visualizer we have created. When you open the visualizer web page in your browser, you can automatically see the status of the server running the Bot game type and get a bird's eye view of the game in progress. You can see the waypoints which are marked by green dots and the active players which have their name next to moving circles with a line indicating which way they are facing. From here you can view the game and see what your bot is doing as shown in the visualizer screenshot.
The visualizer can be found here: http://www.utbots.com/VisualizerFullPage.aspx
Be sure you enter the same server IP address you provided in your bot’s code.

[image: image1.png]

What To Do Next
Now that you have got your bot into the game and made it move around a bit you can start thinking about making it into a decent player of the game. Take a look at the other members of the GameMap class so that your bot can look for weapons and health packs and move towards them. Then take a look at the members of the GameState class for the information that your bot is given about the game around it.

One thing you will need to add is some way that your bot can be in a particular state at any given time. Sensible states might be "Roaming", "Hunting", "Idle", "Recovering", etc. Depending on the state your bot is in it will do different things each time ProcessActions is called.

If it is in the roaming state, for example, it will be looking for a navigation point. If it is in the hunting state it will be chasing other bots. If it is in the recovering state it will be avoiding other bots and looking for a health pack, and so on. You can keep track of the state of your bot by creating an enumerated type with the different values. Then your ProcessActions method can contain a switch statement which makes it behave differently, depending on what it is doing.

A state machine is just one way you could program your AI, you could make a sophisticated bot that had a way of determining if a result had a positive or negative consequence and then have the bot perform more actions that had a positive consequence. Essentially a learning bot, be careful though if your bot takes too long executing ProcessActions it will get out of touch with the game as messages will sit on the queue unprocessed waiting for your code to finish.
Delphi Prism Version

As was mentioned, this was originally written for C# and VB by Andy Sterland & James Lissiak. Jim McKeeth adapted it to Delphi Prism. For more information on the Delphi Prism implementation, and a full set of links, visit www.Delphi.org/Robot-Rage/
Conclusion
With this quick getting started guide you should be able to go about creating your own UT3 Deathmatch player. There are also some very handy hints in the FAQ below about getting your bot on the road to stardom.

If you’re feeling particularly brave join our project on CodePlex at http://www.codeplex.com/UT3Bots and help pitch in with improving the bot client, the visualizer, or even the server mutator.
Happy Fraggin'
Frequently Asked Questions

Do I need Unreal Tournament 3 to use this stuff?
No, you can create bots and have them connect to any UT3 server that is running the special Bot game type and use the visualizer to get an idea of what’s going on. Of course this way isn’t as pretty as using UT3 itself!
You can also run the server without owning a copy as Epic distributes a free standalone server runtime which you can get from:
 http://www.fileplanet.com/182580/180000/fileinfo/Unreal-Tournament-3-Windows-Dedicated-Server .
My bot won't move! What did I do wrong?
This could be due to incorrect programming logic, please double check your code. You may also have left a Break Point within Visual Studio, if this is reached while watching your bot via Unreal Tournament 3 your bot will appear to freeze until your program continues.

My bot keeps getting stuck when it runs into a wall. How can I stop this?
Try attaching to the OnBumpedWall event and reacting to it to 'unstick' your bot. An example of how to do this would be to add the following code to your bot constructor.

self.Events.OnBumpedWall += @Events_OnBumpedWall;

And then add the following method to do something whenever your bot hits a wall.
method Events_OnBumpedWall (sender: object; e: BotSpawnedEventArgs);
begin
 self.Commands.RotateBy(90);

end;
The code above will simply rotate the bot by ninety degrees when it hits a wall, but you can do whatever you like to make your bot better.
What events can my bot react to?
There are a whole bunch of different events your bot can subscribe to.
Remember you can always check out the API reference and also use intellisense to list all the events in the this.Events property of your bot.
How can I speed up the creation of event handlers for my bot?

There is a simple trick in Visual Studio to automatically generate the code for attaching a handler to an event.
If you type the code for the name of event followed by += you can then press the TAB key twice and Visual Studio will generate the attaching and handler code for you.

My bot seems a little slower than the other bots! How do I make it faster?
Try improving your bot’s logic to optimize the speed.
The quicker the ProcessActions() method completes the more time your bot has to react in the game.
My Bot is nearly dead! How do I get it to collect some health?
A simple idea would be to just run your bot around the level, checking the GameState.ItemsVisible list to see if your bot can see a Health item and if it can, get it to run to that location to collect it.

Another idea would be to use the GetNearestItem() method inside the GameMap class to find the location of the closest MediBox. Then you can call the GetPathTo() method from the Commands class to ask for an array of UTNavPoints to get to that health box. Once you have received this path, you can just get your bot to run to each point in turn until it reaches the health.

The following example shows you how you could do this:
In your constructor:

self.Events.OnPathReceived += @Events_OnPathReceived;

In your class interface
//Some variables to store our data

var

 pathToRun UTNavPoint[];

 index: integer = 0;

...
In your class body
method TMyBot.ProcessActions();

begin

 //Check to see if we have a path to run already

 if (Assigned(pathToRun)) then

 begin

 //Run to this point on the path

 Commands.RunTo(pathToRun[pathIndex].Location);

 //Check to see if our bot is near the point we are running to

 if (SelfState.IsCloseTo(pathToRun[pathIndex])) then

 begin

 //Move our index to the next point in the path array

 pathIndex := pathIndex + 1;

 if (pathIndex >= pathToRun.Length) then

 begin

 //The index has reached the end of the path.

 pathToRun := nil;

 end;

 end

 else

 begin

 //We don't have a path so find the nearest health box

 var box: UTObject := GameMap.GetNearestItem(HealthType.MediBox);

 //Ask for a path to that box

 Commands.GetPath("Looking for health", box.Location);

 end;

 end;

end;
//Attach this method to collect the result back from GetPath()

method TMyBot.Events_OnPathReceived(sender: Object; e: PathEventArgs);

begin

if (e.Id = 'Looking for health') then

begin

//The server has sent us a path so store it in our variable

pathToRun := e.Nodes.ToArray();

end;

end;

Some of the methods want me to provide a HealthType, AmmoType, etc as a parameter. Where can I find these?
These types are Enumerators which have been used to make coding your bot easier. They are all located inside the UT3Bots.Communications namespace so to use them you need only type in the appropriate name and Intellisense should fill in the rest.

For example, typing WeaponType. would fill the Intellisense with the different types of weapons in UT3 so you could then pass these to the GameMap.GetNearestItem() method.

These types can all be sent as parameters to various methods in the Commands class:

· AmmoType – A list of all the types of ammo for weapons in the game

· ArmorType – A list of all the types of armor in the game

· HealthType – A list of the different types of health items in the game

· WeaponType – A list of the different types of weapon in the game
The following types can be sent as parameters to your bot’s base constructor:

· BotColor – A list of the 5 different colours to use when configuring your bot
· BotMesh – A list of the skins that you can give your bot when configuring it
There is also the Emote enumeration which is used when calling the PerformEmote command.

How do I shoot at another player?

All you need do is check the.PlayersVisible list for any players that your bot can currently see. You would then call the Commands.StartFiring() passing in one of the Bots from the list and a bool which if set to true your bot will use the secondary fire mode on the current weapon if set to false your bot will use the primary fire mode.
Which version of Unreal Tournament 3 do I need if I want to see in game action?

Although you don't require a copy of UT3 to program a bot, if you want to get the best experience possible you should own the game so that you can see your bot in all its High Resolution 3D goodness.
The minimum required version for running the server UT3 BotDeathmatch game type is UT3 v1.2 because Epic introduced some unreal script classes in that patch that make the whole thing possible.

Where can I get my hands on the source code?

The UT3 Bots project is available on CodePlex at http://www.codeplex.com/UT3Bots there you can download or browse all the code that is used in the project.
There are also specific instructions for building the UT3 Server code in the readme.txt file should you feel adventurous enough to make some changes to it.

API Quick Reference

This is just a quick list of the interface. It was obtained using Red-Gate’s Reflector (originally by Lutz Roeder). Reflector uses reflection to provide insight into namespaces and assemblies. All of this can be obtained from IntelliSense in Visual Studio as well.

UT3Bots Namespace

This is the main namespace for your bot. It contains 2 additional namespaces: Communications and UTItems.
UTBot Class

This is the class you descend from when you create your bot. It only has one virtual method. All the events are part of the Events property. Many of the other properties are classes that expose additional information.
 { Methods }

· constructor(server: String; botName: String; botSkin: BotMesh; botColour: BotColor);

· ProcessActions; virtual;

{ Properties }

· BotName: String;

· Commands: BotCommands;

· Events: BotEvents;

· GameMap: UTMap;

· GameState: GameState;

· IsInGame: Boolean;

· IsWorking: Boolean;

· SelfState: UTBotSelfState;

· Server: String;

BotCommands Class

This class is used with the Commands property of UTBot. These are the actions you can instruct your bot to perform.
{ Methods }

· constructor(Bot: UTBot; Connection: UT3Connection);

· ChangeWeapon; // Changes to best weapon

· ChangeWeapon(Weapon: UTIdentifier);

· GetPath(Id: String; Target: UTIdentifier);

· GetPath(Id: String; Location: UTVector);

· Jump;

· PerformEmote(Emote: Emote);

· RotateBy(Degrees: Int32);

· RotateTo(Degrees: Int32);

· RotateTo(Target: UTIdentifier);

· RotateTo(Location: UTVector);

· RunTo(Target: UTIdentifier);

· RunTo(Location: UTVector);

· SendChatMessage(Message: String; SendToTeam: Boolean);

· SendTauntMessage(Target: UTIdentifier);

· SetMovingSpeed(UseWalk: Boolean);

· StartFiring(useSecondaryFire: Boolean);

· StartFiring(Target: UTIdentifier; useSecondaryFire: Boolean);

· StartFiring(Location: UTVector; useSecondaryFire: Boolean);

· StopFiring;

· StopMoving;

· StrafeTo(Location: UTVector; Target: UTIdentifier);

· StrafeTo(Location: UTVector; Target: UTVector);

BotEvents Class

This class is used with the Events property of UTBot. In this list of events, each event has children which are the properties of the arguments (if any).
{ Events }
· OnBumped: EventHandler<BumpedEventArgs>;

· HitNormal: UTVector;

· Id: UTIdentifier;

· Location: UTVector;

· OnBumpedWall: EventHandler<BumpedEventArgs>;

· HitNormal: UTVector;

· Id: UTIdentifier;

· Location: UTVector;

· OnDamaged: EventHandler<DamagedEventArgs>;
· DamageAmount: Int32;

· DamageType: String;

· Id: UTIdentifier;

· Location: UTVector;

· Momentum: UTVector;

· OnDied: EventHandler<HasDiedEventArgs>;
· Killed: UTIdentifier;

· Killer: UTIdentifier;

· OnFoundFall: EventHandler<FallEventArgs>;
· DidFall: Boolean;

· Location: UTVector;

· OnGotPickup: EventHandler<PickupEventArgs>;
· Item: UTItem;

· WasFromDrop: Boolean; // Dropped by a bot
· OnHeardNoise: EventHandler<HeardSoundEventArgs>;
· Id: UTIdentifier;

· Location: UTVector;

· Loudness: Single;

· OnMatchEnded: EventHandler<MatchEndedEventArgs>;

· Reason: String;

· WinnerId: UTIdentifier;

· WinnerName: String;

· OnOtherBotDied: EventHandler<HasDiedEventArgs>;

· Killed: UTIdentifier;

· Killer: UTIdentifier;

· OnPathReceived: EventHandler<PathEventArgs>;
· Id: String;

· Nodes: List<UTNavPoint>;

· OnReceivedChat: EventHandler<ChatEventArgs>;
· FromName: String;

· Id: UTIdentifier;

· IsFromTeam: Boolean;

· Message: String;

· OnSeenOtherBot: EventHandler<SeenBotEventArgs>;
· Id: UTIdentifier;

· IsReachable: Boolean;

· Location: UTVector;

· Name: String;

· Rotation: UTVector;

· Team: String;

· Velocity: UTVector;

· Weapon: String;

· OnSpawned: EventHandler<BotSpawnedEventArgs>;

· OnTaunted: EventHandler<TauntedEventArgs>;
· FromName: String;

· Id: UTIdentifier;

· OnWeaponChanged: EventHandler<WeaponChangedEventArgs>;
· Id: UTIdentifier;

· WeaponClass: String;

GameState Class
This class encapsulates the state of the game.

{ Properties }

· CurrentScores: List<UTPlayerScore>;

· ItemsVisible: List<UTItemPoint>;

· NavPointsVisible: List<UTNavPoint>;

· PlayersVisible: List<UTBotOppState>;
 { Methods }

· GetBotNameFromID(BotId: UTIdentifier): String;

· IsBot(Id: UTIdentifier): Boolean;

UTBot.Communications Namespace

This namespace contains enumerations to identify items in the game. The values are listed in alphabetical order, not numeric order.
· BotMesh = (Barktooth, Harbinger, IronGuard, Lauren, Matrix, Reaper, Sharptooth);

· BotColor = (Blue, None, Random, Red);

· Emote = (BringItOn, BulletToTheHead, ComeHere, HoolaHoop, PelvicThrust, SlitThroat);

· FireType = (AltFiring, Firing, None);

· ItemType = (Ammo, Armor, Health, None, Weapon);

· WeaponType = (Avril, BioRifle, Enforcer, FlakCannon, ImpactHammer, InstaGibRifle, LinkGun, None, Redeemer, RocketLauncher, ShockRifle, SniperRifle, Stinger, Translocator);

· AmmoType = (Avril, BioRifle, Enforcer, FlakCannon, ImpactHammer, InstaGibRifle, LinkGun, None, Redeemer, RocketLauncher, ShockRifle, SniperRifle, Stinger, Translocator);

· HealthType = (BigKegOHealth, HealthVial, MediBox, None, SuperHealth);

· ArmorType = (Berserk, ChestArmour, Helmet, Invisibility, Invulnerability, JumpBoots, MultiplyDamage, None, ShieldBelt, ThighPads);

UT3Bots.UTItems Namespace

This namespace contains classes used to describe other items.
UTBotState Class

The UTBotState class is an abstract class that describes a bot. It has two derived classes UTBotOppState and UTBotSelfState. All properties are read-only

{ Properties }

· ArmorStrength: Int32 ;

· Color: BotColor;

· FiringType: FireType;

· Health: Int32;

· IsFiring: Boolean;

· Mesh: BotMesh;

· Name: String;

· Rotation: UTVector;

· RotationAngle: Double;

· Velocity: UTVector;

· Weapon: WeaponType;

UTBotOppState Class

The UTBotOppState class descends from UTBotState and describes the state of an opponent.
· IsReachable: Boolean;

UTBotSelfState Class

The UTBotSelfState class descends from UTBotState and describes the state of your bot (self). Rather introspective.
· HasWeapon(&type: WeaponType): Boolean;

· IsCloseTo(toObject: UTObject): Boolean;

· IsCloseTo(location: UTVector): Boolean;

UTIdentifier Class

The UTIdentifier class is a string with special wrapping. It identifies bots, weapons and other items. It is used by the following methods in UTBot: ChangeWeapon, GetPath, RotateTo, RunTo, SendTauntMessage, StartFiring, and StrafeTo. Additionally it is used by the following event handlers: BumpedEventArgs, DamagedEventArgs, HasDiedEventArgs, HeardSoundEventArgs, MatchEndedEventArgs, ChatEventArgs, SeenBotEventArgs and TauntedEventArgs.
{ Methods }

· CompareTo(obj: Object): Int32;

· CompareTo(other: UTIdentifier): Int32;

· Equals(obj: Object): Boolean; override;

· Equals(other: UTIdentifier): Boolean;

· Equals(x: UTIdentifier; y: UTIdentifier): Boolean;

· GetHashCode: Int32; override;

· GetHashCode(obj: UTIdentifier): Int32;

· operator op_Equality(a: UTIdentifier; b: UTIdentifier): Boolean;

· operator op_Inequality(a: UTIdentifier; b: UTIdentifier): Boolean;

· ToString: String;

UTItem Class

The UTItem class represents Ammo, Health, Weapons and other items.
{ Methods }

· IsItem(&type: AmmoType): Boolean;

· IsItem(&type: ArmorType): Boolean;

· IsItem(&type: HealthType): Boolean;

· IsItem(&type: ItemType): Boolean;

· IsItem(&type: WeaponType): Boolean;

· ToString: String; override;

{ Properties }

· ActualClass: Int32;

· ItemType: ItemType;

UTObject Class

The UTObject class is a base class that is derived from by the UTBotState (UTBotOppState & UTBotSelfState) and UTPoint (UTItemPoint & UTNavPoint).

{ Properties }

· Id: UTIdentifier;

· Location: UTVector;

{ Events }

· PropertyChanged: PropertyChangedEventHandler;

UTPoint & UTNavPoint Class

The UTPoint class represents a point on the map. It derives from UTObject and is derived from by UTItemPoint & UTNavPoint. UTNavPoint does not introduce any additional members.
{ Properties }

· IsReachable: Boolean;

UTItemPoint Class

The UTItemPoint class represents a point at which an item is located. It derives from UTPoint.

{ Properties }

· IsReadyToPickup: Boolean;

· Item: UTItem;

UTMap Class
The UTMap Class represents the map, items on the map, and navigation (nav) points. Nav points are way points you bot can follow as it moves through the map looking for other bots and items.

{ Methods }

· GetNearestItem(&type: AmmoType): UTItemPoint;

· GetNearestItem(&type: ArmorType): UTItemPoint;

· GetNearestItem(&type: HealthType): UTItemPoint;

· GetNearestItem(&type: ItemType): UTItemPoint;

· GetNearestItem(&type: WeaponType): UTItemPoint;

· GetNearestItem(&type: AmmoType; toExclude: UTItemPoint): UTItemPoint;

· GetNearestItem(&type: AmmoType; location: UTVector): UTItemPoint;

· GetNearestItem(&type: ArmorType; toExclude: UTItemPoint): UTItemPoint;

· GetNearestItem(&type: ArmorType; location: UTVector): UTItemPoint;

· GetNearestItem(&type: HealthType; toExclude: UTItemPoint): UTItemPoint;

· GetNearestItem(&type: HealthType; location: UTVector): UTItemPoint;

· GetNearestItem(&type: ItemType; toExclude: UTItemPoint): UTItemPoint;

· GetNearestItem(&type: ItemType; location: UTVector): UTItemPoint;

· GetNearestItem(&type: WeaponType; toExclude: UTItemPoint): UTItemPoint;

· GetNearestItem(&type: WeaponType; location: UTVector): UTItemPoint;

· GetNearestItem(&type: AmmoType; location: UTVector; toExclude: UTItemPoint): UTItemPoint;

· GetNearestItem(&type: ArmorType; location: UTVector; toExclude: UTItemPoint): UTItemPoint;

· GetNearestItem(&type: HealthType; location: UTVector; toExclude: UTItemPoint): UTItemPoint;

· GetNearestItem(&type: ItemType; location: UTVector; toExclude: UTItemPoint): UTItemPoint;

· GetNearestItem(&type: WeaponType; location: UTVector; toExclude: UTItemPoint): UTItemPoint;

· GetNearestItemPoint: UTItemPoint;

· GetNearestItemPoint(toExclude: UTItemPoint): UTItemPoint;

· GetNearestItemPoint(location: UTVector): UTItemPoint;

· GetNearestItemPoint(location: UTVector; toExclude: UTItemPoint): UTItemPoint;

· GetNearestNavPoint: UTNavPoint;

· GetNearestNavPoint(toExclude: UTNavPoint): UTNavPoint;

· GetNearestNavPoint(location: UTVector): UTNavPoint;

· GetNearestNavPoint(location: UTVector; toExclude: UTNavPoint): UTNavPoint;

{ Properties }

· InvItems: List<UTItemPoint>;

· NavPoints: List<UTNavPoint>;

UTPlayerScore Class

The UTPlayerScore class provides the score for a player.

{ Properties }

· Id: UTIdentifier;

· Name: String;

· Score: Int32;

{ Events }

· PropertyChanged: PropertyChangedEventHandler;

UTVector Class

The UTVector class represents absolute X, Y and Z coordinates relative to the map.

{ Methods }

· constructor(x: Single; y: Single; z: Single);

· DistanceFrom(a: UTVector): Single;

· Equals(obj: Object): Boolean; override;

· GetHashCode: Int32; override;

· Parse(toParse: String): UTVector; // Class method

· ToString: String; override;

{ Properties }

· X: Single;

· Y: Single;

· Z: Single;
Copyright Information

This is a modified version of the user guide provided

 by Andy Sterland & James Lissiak

Modification by Jim McKeeth http://www.Delphi.org/Robot-Rage
Copyright (c) 2008, Andy Sterland & James Lissiak

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this

 list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions and the following disclaimer in the documentation

 and/or other materials provided with the distribution.

* Neither the name of Andy Sterland & James Lissiak nor the names of its

 contributors may be used to endorse or promote products derived from this

 software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Jim McKeeth
Page 15 of 17
www.delphi.org/robot-rage/

